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Dynamic aperture extrapolation in the presence of tune modulation
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In hadron colliders, such as the Large Hadron Collider~LHC! to be built at CERN, the long-term stability
of the single-particle motion is mostly determined by the field-shape quality of the superconducting magnets.
The mechanism of particle loss may be largely enhanced by modulation of betatron tunes, induced either by
synchrobetatron coupling~via the residual uncorrected chromaticity!, or by unavoidable power supply ripple.
This harmful effect is first investigated in a simple dynamical system model, the He´non map with modulated
linear frequencies. Then a realistic accelerator model describing the injection optics of the LHC lattice is
analyzed. Orbital data obtained with long-term tracking simulations (105–107 turns! are post-processed to
obtain the dynamic aperture. It turns out that the dynamic aperture can be interpolated using a simple empirical
formula, as it decays proportionally to a power of the inverse logarithm of the number of turns. Furthermore,
the extrapolation of tracking data at 105 turns gives reliable estimates of the dynamic aperture for 107 turns,
which represent the expected duration of the LHC injection plateau.@S1063-651X~98!00602-3#

PACS number~s!: 41.85.2p, 29.27.2a, 03.20.1i
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I. INTRODUCTION

In large hadron accelerators, such as the Large Had
Collider ~LHC! @1#, two counter-rotating beams perform u
to 107 turns at the injection plateau, before energy rampi
During this time, the particle dynamics can be dominated
the unavoidable field-shape imperfections of the superc
ducting magnets. The nonlinear fields endanger the b
stability, since they introduce a tune dependence with am
tude and energy, and excite nonlinear resonances@2–5#. The
resulting particle losses may also occur after many millio
of turns ~see, for instance, Refs.@6–10#!.

To optimize the accelerator performances and to fix
upper bound to the unwanted multipolar errors, one ha
evaluate the border of the region around the reference o
that is stable for the required number of turns. Inside t
domain, usually called the dynamic aperture, one can sa
operate with the beam. The evaluation of the dynamic ap
ture is in general based on symplectic integration of com
cated equations of motion using tracking codes. Notw
standing the powerful farms of modern computers, fo
realistic model of the LHC lattice one can hardly evalua
the beam stability for more than 106 turns. Moreover, one
has to investigate a large set of initial conditions for ea
machine configuration, and several configurations to o
mize the lattice performances. Therefore, to design the L
lattice for 107 turns, methods alternative to brute-forc
element-by-element tracking should be worked out.

Long-term particle losses are drastically enhanced if
betatron tune is modulated by some external causes, su
the power supply ripple, or by synchrobetatron coupling,
the residual uncompensated chromaticity. This effect can
modelized by a set of nonlinear oscillators whose linear

*Present address: PS Division, CERN, CH 1211 Geneva, Swit
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quencies are modulated. There exists a wide literature on
subject: analytical and numerical studies have been car
out on both simplified and more realistic models of accele
tors; numerous experiments have been performed on se
machines@10–13#.

Mechanisms for modulational diffusion were analyzed
Refs. @14,15#; using perturbation theory one can work o
analytical estimates of the diffusion coefficients in the mod
lational layer created by resonance overlapping. These t
have been used to analyze a simplified model~modulated
FODO cell, i.e., a modulated He´non mapping! to distinguish
between different regimes due to the modulational spe
@16#. Rigorous estimates have also been obtained for
change in the adiabatic invariant when the phase spac
slowly swept by a resonance@17#. Using these results, est
mates of the diffusion coefficient in some phase space
gions have been worked out@18,19#.

If the mechanism of stability loss can be described
terms of a Fokker-Planck equation, the diffusion coefficie
has to depend strongly on the adiabatic invariants, and on
local structure of the resonances~see, for instance, Ref
@15#!. This leads to severe difficulties, since in order to tre
the complete problem one has to consider at least the un
lying network of resonances in the four-dimensional~4D!
phase space, while most of the references are restricted t
analysis of a 2D case~plus modulation!. Approximations that
assume a smooth dependence of the diffusion coefficien
the invariants@12# clearly neglect the presence of the we
known phenomena due to the local structure of resonan
@10#; on the other hand, the relevance of these local phen
ena can be questionable. The possibility itself of describ
the dynamics in presence of tune modulation through a
fusive process, i.e., with a Fokker-Planck equation and
action-dependent diffusion coefficient, has been conside
questionable by some authors@20#.

Other approaches to the analysis of long-term stabi
have been proposed. The Lyapunov exponent~originally de-
r-
3432 © 1998 The American Physical Society
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57 3433DYNAMIC APERTURE EXTRAPOLATION IN THE PRESENCE . . .
veloped and applied in celestial mechanics@21–23#! is an
indicator that can be extracted from tracking data: it sho
allow one to distinguish regular from chaotic motion using
limited number of turns@8,9#. Assuming that all chaotic par
ticles will be lost, one obtains an estimate of the core
stable particles. Unfortunately, this assumption leads to
vere underestimates in the case of tune modulation, wh
particle losses can be extremely slow, and therefore cha
regions are stable for a sufficiently high number of tur
@10#. One can also try to define approximated global inva
ants through numerical methods, and use the drift in
space of these pseudoinvariants to give long-term bou
@24,25#.

A pragmatic approach is based on the analysis of the
vival times provided by computer simulations, plotted vers
the initial amplitude~survival plots; see Refs.@6,7,26#!. The
main drawback is that these plots are very irregular, a
therefore an extrapolation to larger times is very hard to
obtained~see, for instance, Refs.@6,7,20,26#!. This is due to
an insufficient analysis of the phase space, which is usu
scanned along a lineI x5I y in the space of the linear invari
ants (I x ,I y); in a previous paper we showed that, by pe
forming a scan of the phase space along several lineI y
5I xtana, and taking an average over the anglea @27#, the
survival plots become much more regular.

For the purely 4D case~i.e., no tune modulation! the dy-
namic aperture turns out to approximately decay with
inverse of the logarithm of the number of turns@9#

D~N!5A1
B

log10 N
. ~1!

This result can be interpreted through a simple dynam
model @28#: the phase space is divided into an inner reg
stable for infinite times, and an outer wide chaotic ba
where the escape rate agrees qualitatively with the Nekh
shev estimate@29–31#. This approach turns out to be partic
larly useful since it provides quantitative estimates for la
but finite number of turns. Some analyses of simplified
models@32,33# gave a first indication that the extrapolatio
of the inverse logarithm formula for infinite number of turn
i.e., the parameterA in Eq. ~1!, agrees rather well with the
prediction of the chaotic border obtained through t
Lyapunov exponent.

In this paper we analyze the dynamics in the presenc
tune modulation following a similar approach to the abo
cited 4D case. We make numerical simulations over b
simplified lattices~the modulated 4D He´non map, also ana
lyzed in Refs.@16,10#! and realistic models of the LHC. Ou
purpose is to find a framework to interpret tracking data a
to speed up, if possible, numerical simulations. Contrary
Ref. @16#, we fix the spectrum of the modulational freque
cies to the measured values for the super-proton-synchro
~SPS! lattice @10#: we limit ourselves to finding the depen
dence of the dynamics on the amplitude of the modulati
for a given frequency spectra. Since we do not assum
diffusion process, we do not compute diffusion coefficien
the dynamical quantity that we evaluate is the dynamic
erture as defined in Ref.@27#. The averaging procedure use
in this definition fails, in general, to detect the fine and
regular structure of resonance bands in phase space~see, for
d
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instance, Ref.@10#!. The obtained dynamic apertureD turns
out to be a smooth function of the number of turnsN, and is
very well interpolated by the three-parameter formula

D~N!5A1
B

log10
k N

. ~2!

For the 4D case the best fit ofk is around 1.5, that is, the
same value that can be rigorously proved through car
estimates of the remainder perturbative series@40#. The ex-
ponent decreases when the amplitude of the tune modula
becomes larger; this is natural, since larger modulational
plitudes imply more relevant long-term phenomena.

The above equation implies that the phase space is
into two parts: an inner part stable for infinite times, and
outer part where the chaotic motion is dominant. In the in
part the instabilities due to Arnold diffusion~or thin layer
diffusion; see Ref.@15#! are negligible, since they occupy a
irrelevant fraction of the phase space and, moreover, are
tremely slow@41#. Using the terminology of Ref.@15#, the
outer part can be considered as a thick layer diffusion, wh
resonance overlapping has wiped out most of the invar
surfaces. It is not clear whether the decaying rate of
dynamic aperture empirically worked out by tracking da
~2! fits with any diffusive process; the aim of this paper is
present a phenomenological framework to interpret the
sults of our numerical simulations, and to analyze the po
bility of speeding up simulations for realistic models.

When the modulational amplitude reaches a certain lim
the extrapolation at infinity becomes negative, and, theref
according to this scenario the entire phase space is unst
This is in agreement with experiments@10,11# that for large
modulations show that the beam has a finite lifetime. In th
cases the exponentk may become negative; a decaying
the dynamic aperture approximately proportional to the lo
rithm of the number of turns~i.e., k521) was observed
several years ago in the superconducting supercollider~SSC;
see Ref.@34#! simulations, even though it has never be
published@35#.

The three parameters of Eq.~2! can be evaluated using
limited set of data, and then the formula can be extrapola
to obtain the dynamic aperture at larger times: for the mo
lated 4D Hénon map we show that, using the data up to 15

turns, the extrapolation to 107 turns agrees well with tracking
~within 5%). Theinterpolation involves a nonlinear fit with
three parameters, and some care is needed to determin
confidence level for the best fit and the error associated w
extrapolations. For the LHC case, even though a direct c
parison with 107 turns is not possible, we show that extrap
lation from 105 to 106 turns is in agreement with tracking
and the errors associated with the extrapolation of track
data from 105 to 107 turns are of the order of 5–10 %.

The plan of the paper is the following: as a first step,
introduce the models used for the numerical simulatio
namely, the modulated He´non map and the LHC lattice ver
sion 4.3 with tune modulation. Then we define the dynam
aperture forN turns and the associated error due to the s
of the initial conditions. After that, we discuss our metho
to predict a dynamic aperture. Finally, we show our nume
cal results for the He´non map and the LHC, and we discu
our conclusions.
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3434 57M. GIOVANNOZZI, W. SCANDALE, AND E. TODESCO
II. MODELS

The study of single-particle dynamics in the presence
nonlinear forces requires an appropriate lattice model
computer simulations. The model must be, at the same t
simple for a fast computational response, and reali
enough to provide useful information. In our study we w
use two models, with complementary characteristics. The
Hénon map@5# contains most of the physical features of
nonlinear lattice, in particular a 4D description of the moti
with the possibility to include tune modulation. Its imple
mentation is straightforward, and provides a very fast co
puter tracking simulation, well suited to investigate lon
term dynamical behaviors in detail. On the other hand,
LHC lattice model allows one to investigate 6D symplec
motion, and provides quantitative information on the effe
of a realistic set of multipolar errors.

The tune ripple has a strong destabilizing effect on n
linear motion. In order to investigate scaling laws, we d
cided, somewhat arbitrarily, to introduce in our simulation
tune modulation similar to that observed in the CERN-S
in various occasions. In the SPS, the instantaneous tune
be continuously measured with a Schottky noise dete
@36# at constant energy, in steady-state conditions. Peak
peak variations of the order of 2–3 in 1024 units are usually
observed. The frequency spectrum is mostly made of se
dominant peaks: the main one at 50 Hz and the others a
higher harmonics of 50 Hz.

In our computer simulations, the time variation of the tu
is represented by the sum of seven sine waves, with the s
frequencies and amplitudes observed in the SPS spect
The modulation amplitude can be changed globally by
multiplicative factor applied to each component.

A. Modulated Hénon map

The modulated 4D He´non map reads

S x~n11!

px
~n11!

y~n11!

py
~n11!

D 5LS x~n!

px
~n!1@x~n!#22@y~n!#2

y~n!

py
~n!22x~n!y~n!

D , ~3!

where (x,px ,y,py) are the phase space coordinates, and
linear part of the mapL is the direct product of two two-
dimensional rotationsR,

L5S R~vx
~n!! 0

0 R~vy
~n!!

D , ~4!

whose linear frequenciesvx
(n) , vy

(n) are slowly varying with
the discrete timen according to

vx
~n!5vx0S 11e(

k51

m

ekcos~Vkn!D ,

vy
~n!5vy0S 11e(

k51

m

ekcos~Vkn!D . ~5!

We considered the parameters given in Table I: one m
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frequencyV1 and six harmonics with relative amplitude
ranging from 0.7 to 0.07. These data correspond to the t
modulation due to the observed ripple in the quadrupoles
the SPS@10#. In our simulations we fix the linear frequencie
vx0 and vy0 to 0.168 and 0.201, i.e., rather close to res
nances of order 6 and 5, in order to have relevant long-te
phenomena. A He`non map without modulation with the
same linear frequencies was extensively analyzed in Ref.@9#.
The modulational frequenciesVk and the amplitude ratiosek
are fixed according to the values of Table I, and we anal
the dependence of the dynamic aperture on the amplitude
of the modulation, that has been varied between 1 and 6

B. LHC with tune modulation

The lattice of the LHC is described in Ref.@37#. It is made
of 23 regular cells per arc, each containing six tightly pack
14.2-m-long dipoles. There are eight octant insertions, f
experimental insertions, and four machine insertions. The
perimental insertions are tuned with injection optics (b*
56 m!. The horizontal and the vertical tunes are sligh
separated:Qx563.28 andQy563.31. This choice results
from the optimization of the LHC working point, as de
scribed in Ref.@38#. The machine superperiodicity is 1.

The field-shape errors are described by thin-lens mu
poles up to order 11, located in the middle of each dipole a
quadrupole. For every magnet, each multipolar componen
determined using a random number generator with Gaus
distribution, truncated at three rms deviations. The me
value of the Gaussian distribution is specific of the mach
octant. This feature is typical of the LHC: the magnets a
supposed to have systematic errors that vary from octan
octant. The error values of the main dipoles and quadrup
used in the simulation are given in Ref.@39#. The selected
realization of the random imperfections used in Sec. V B h
a dynamic aperture at 105 turns close to the average value
a set of 64 random realizations.

A set of multipolar elements is used to correct the nonl
ear imperfections of the LHC lattice. At each dipole e
there are sextupolar and decapolar correctors interconne
in families. They are intended to compensate for the aver
value of the sextupolar and decapolar systematic error
each octant. Two families of sextupoles, located close to
focusing and defocusing quadrupoles, are used to correc
chromaticities. However, to partially take into account t
operational difficulty of this correction in a real machine, w
decided, somewhat arbitrarily, to setQ852. Since we are
interested in scaling laws for nonlinear phenomena, we
cided to disregard linear imperfections that induce fin

TABLE I. Parameters of the modulated He´non map.

k Vk 104ek

1 2p/868.12 1.000
2 2V1 0.218
3 3V1 0.708
4 6V1 0.254
5 7V1 0.100
6 10V1 0.078
7 12V1 0.218
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57 3435DYNAMIC APERTURE EXTRAPOLATION IN THE PRESENCE . . .
closed orbits or linear coupling.
The tune modulation is obtained by summing up sev

sine waves with the same relative amplitudes and frequen
as those used for the He´non map~see Table I!. The global
amplitude is varied by a multiplicative factore that ranges
from 1 to 8. The horizontal and vertical tunes are affected
a synchrotron modulation of the same order of magnitude
the one induced by ripple. The numerical results quoted
Sec. V B refer to particles tracked with an initial momentu
deviation ofdp/p51024, resulting in a tune oscillation o
231024 amplitude due to synchrotron coupling.

III. DYNAMIC APERTURE EVALUATION

A. Dynamic aperture definition

In a previous work@27#, we proposed a definition of a
dynamic aperture as a function of the number of turnsN as
the first amplitude where particle loss occurs beforeN turns,
averaged over the phase space. Particles are started al
2D polar grid in the coordinate space (x,y):

x5r cosu, y5r sin u, ~6!

and the initial momentapx py are set to zero. Letr (u;N) be
the last stable initial condition alongu before the first loss a
a turn number lower thanN occurs. Then the dynamic ape
ture is defined as

D5S E
0

p/2

@r ~u;N!#4sin2u du D 1/4

. ~7!

With respect to the approach used in several long-term si
lations ~see, for instance, Refs.@6,26,38#!, where a fixed
value ofu is considered in order to speed up simulations, t
definition provides a smoother dependence ofD on N, thus
allowing one to derive interpolating formulas and to extrap
late them to predict long-term particle loss.

B. Error estimate

One of the crucial issues in the definition of the dynam
aperture is the determination of the associated error. W
definition ~7! is implemented in a computer code, one has
carry out two discretizations: one over the radial variablr
and one over the angular variableu. Let Dr 5(r max
2r min)/Nr and Du5p/(2Nu) be the step sizes inr and u,
respectively. The total error can be obtained using a Ga
ian sum in quadrature

DD5AS ]D

]r

Dr

2 D 2

1S ]D

]u

Du

2 D 2

. ~8!

An approximated formula for the error can be obtained
replacing the dynamic aperture definition with a simple a
erage overu,

D5
2

pE0

p/2

r ~u;N!du[^r ~u;N!&. ~9!

Using this formula, the associated error reads
n
ies

y
s

in

g a

u-

s

-

en
o

s-

y
-

DD5A~Dr !2

4
1 K U ]r

]u U L 2 ~Du!2

4
, ~10!

and therefore it turns out that the step inr must be equal to
the step inu times ^u]r /]uu& to optimize the integration
steps.

IV. DYNAMIC APERTURE PREDICTION

A. Dynamic aperture extrapolation

1. Interpolating law

In previous works@9,32#, we showed that survival plots
can be interpolated by a simple formula provided that
definition of dynamic aperture~7! is used. In fact, the dy-
namic aperture turns out to decay with the inverse of
logarithm of the number of turns, and to have a limitA for
infinite number of turns that in general is positive,

D~N!5A1
B

log10~N!
. ~11!

It has been pointed out@28# that Eq.~11! can be justified in
terms of the Kolmogorov-Arnold-Moser~KAM ! of the
Nekhoroshev theorems, using a simple model of ph
space. One assumes that the phase space is divided into
parts.

~i! An inner region where almost all the initial condition
give rise to regular orbits, except a negligible fraction
initial conditions that falls on the resonance web~the Arnold
web!. According to the terminology of Ref.@15#, we have
only thin layer diffusion. We assume that this domain can
considered stable for infinite times.

~ii ! An outer region where almost all the initial condition
give rise to chaotic orbits, except a small fraction of regu
orbits around stable islands, that can be neglected. Accor
to the terminology of Ref.@15# we have thick layer diffusion,
i.e., most of the invariant surfaces have been wiped out. P
ticles escape from this region according to the Nekhoros
exponential estimate, since they are close to the chain of
last invariant tori that are on the border of the previous
gion.

Numerical simulations based on long-term tracking a
frequency analysis have confirmed this scenario for 4D m
pings @9#. Using these hypotheses, one can work out
following formula:

D~N!5A1
B

log10
k ~N/N0!

. ~12!

The optimal analytical estimate of the exponentk is equal to
(d21)/2, whered is the phase space dimension@40#. For
instance, in the case of a four-dimensional map~such as the
Hénon map without modulation or the LHC on momentum
without modulation! one hasd54, and thereforek51.5.
One can try to interpolate the long-term data usingA,B, and
k as free parameters, and fixingN0 to one using the heuristic
argumentD(1)'`. It turns out~see Ref.@32#! that in sev-
eral cases the fitted value of the exponent agrees with
analytical estimate. In the case with tune modulation, o
can make the following observations.
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3436 57M. GIOVANNOZZI, W. SCANDALE, AND E. TODESCO
~i! From a theoretical point of view, the Nekhorosh
theorem holds for weak perturbations of an integra
Hamiltonian that is given by a certain number of uncoup
oscillators. Adding the modulation of the linear frequenc
strongly modifies the structure of the Hamiltonian, and the
fore Eq. ~12! can no longer be justified in terms of th
Nekhoroshev theorem.

~ii ! From a phenomenological point of view, it is evide
that when the modulation is added the long-term phenom
become more relevant. On the other hand, Eq.~12! means
that the lowerk is, the more relevant the long-term phenom
ena are. Therefore, if Eq.~12! is still valid with modulation,
the exponentk should decrease with the amplitude of t
modulation.

~iii ! Finally, we point out that when the modulation b
comes very relevant, both numerical simulations and r
experiments show that all the phase space becomes uns
This behavior can be taken into account by Eq.~12! if k is
negative, or ifk is positive butA is negative.

Summarizing, we point out that Eq.~12! is not theoreti-
cally justified to interpolate the data in the case of tu
modulation. Nevertheless, if we considerk as an additional
free parameter to fit the data, Eq.~12! can model cases wher
the long-term phenomena are very relevant, up to the
treme situation where the entire phase space is unstable
this reason we also propose to use Eq.~12! to interpolate the
long-term data in the case with modulation. We will sho
that the numerical data are very well interpolated by E
~12!; this implies that the model with an inner stable regi
and an outer chaotic region is still valid for the modulat
case; the interpolation means that the effect of the mod
tion is to shrink the stable core and to slow down the esc
rate of the initial conditions in the outer region.

2. Errors of the fit and extrapolation

The fitting procedure was carried out using the stand
approach based on least-squares minimization. Assum
that the evaluation of the dynamic aperture is affected
Gaussian-distributed errors, the function

x2~A,B,k!5
1

N23(i 51

N Fyi2A2B/ log10
k ~xi !

s i
G2

~13!

follows ax2 distribution, and the parametersA,B, andk that
minimize x2 are the maximum likelihood estimators. In th
previous formula,yi is the dynamic aperture evaluated atxi
turns, ands i is the associated error~see Sec. III!.

For our purposes, it is important to compute not only t
best value of the parameters, but also to evaluate the as
ated errors. Since the fit is nonlinear ink, no analytical for-
mula is available, either for the best parameters or for
errors. A scan overk is carried out: for each value ofk, the
optimal values ofA and B are worked out analytically
Among this one-parameter family of fitting values, w
choose the ones that minimize thex2 @see Eq.~13!#. A xmin

2

of the order of 1 ensures that the data are well fitted by
interpolating law. In order to work out the associated err
the standard technique consists in determining the set in
parameter space (A,B,k) that satisfy
e
d
s
-

na

-

al
ble.

e

x-
or

.

a-
e

d
ng
y

e
ci-

e

e
,
he

x2~A,B,k!2xmin
2 <Dx, ~14!

whereDx is related to the chosen confidence level on
parameters. We usedDx52.7, that ensures a confidenc
level of 90% ~see Ref.@42# for more details!. Then, the pro-
jection of the set that satisfies Eq.~14! on the axesA, B, and
k provides the confidence intervals for the best fit. In t
following we show that such intervals are rather asymme
around the best fit: this is due to the nonlinear characte
the fitting function.

The extrapolation of the formula to a higher number
turns is made by using the best parameters; in order to ev
ate the error, we extrapolate using all the parameters in
the deformed ellipsoid~14!, and we obtain maximum and
minimum extrapolation values. Also in this case the inter
around the best value can be rather asymmetric.

B. Lyapunov exponent

In this section we briefly recall the definition of the max
mal Lyapunov exponent@8,9,23,21,22# and the method base
on thresholds that was proposed in Ref.@9#; then we analyze
the case with modulation. The maximal Lyapunov expon
specifies the ratio of divergence of two orbits whose init
conditions are close in phase space. The estimate of
maximal Lyapunov exponent afterN turns is given by

l~N!5
1

N
log

ux~N!2 x̂~N!u
d

, d!1, ~15!

wherex(N) and x̂(N) are the iterates of the initial condition
x(0) and x̂(0), respectively,d5ux(0)2 x̂(0)u is the initial dis-
tance, and log is the natural logarithm. The theory states
if lim N→`l(N)50, the orbit is regular and therefore the pa
ticle is stable; if the limit is positive, the trajectory is chaot
~i.e., there is exponential divergence of nearby trajector
and hence sensitivity to initial conditions!, and therefore the
particle can be lost sooner or later. The estimate of
Lyapunov coefficient with Eq.~15! allows one to determine
the border between chaotic and regular motion, and there
to predict the dynamic aperture for an infinite number
turns. However, it cannot provide quantitative informati
on the stability of the motion for a finite number of turns.

In Ref. @9# we proposed an automatic method to sel
regular from chaotic orbits based on a threshold on
Lyapunov exponent. For regular particles, the distance
tween neighbor orbits linearly increases with the discr
time N: this is due to the dependence of the frequency on
amplitude. Therefore it is natural to fix a threshold accord
to

sl~N!5
1

N
logAlN. ~16!

If l(N).sl(N), then the particle is assumed to be chao
while if l(N),sl(N) the particle is regular. One can sho
~see Ref.@9#! that the constantAl is related to the maximum
of the derivative of the tune with respect to the amplitu
where the tune is well defined.

In Fig. 1 we show the distribution of the Lyapunov exp
nents of the initial conditions started along grid~6! for the
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Hénon map without modulation; four different numbers
turnsN5103,104,105, and 106 have been used. The distribu
tion of the Lyapunov is compared to the results of long-te
tracking: particles stable for 107 turns are marked in white
while the unstable ones are marked in black. Using
Lyapunov exponent, one can distinguish rather well wh
particles are stable and which are not stable: the sharp fa
the rather narrow peak of Fig. 1, that contains most of
stable particles, is the natural choice of the thresholdsl(N)
for long-term predictions. The peak becomes narrower
narrower when the number of turns is increased. It turns
that the thresholds fixed in this way~i.e., through the com-
parison with tracking! are very well interpolated by Eq.~16!,
with Al50.5 ~see Fig. 1, dotted lines!. We already pointed
out in Ref. @9# that the value ofAl seems to depend ver
weakly on the model.

The dynamic aperture prediction given by the Lyapun
exponent can be computed according to the same form
@see Eq.~7!#, where nowr (u;N) is the initial condition along
u whose Lyapunov exponent is below the threshold. T
error associated with the Lyapunov prediction can be ev
ated using the same scheme provided for plain tracking d

In the case of tune modulation, the results are rather
teresting. In Fig. 2 we show the same plot of Fig. 1 for t
Hénon map with a modulation amplitudee54. Also in this
case, there is a peak of stable particles with a rather sharp
on the right; the threshold is very well interpolated by E
~16! with the same value of the constantAl ~see the dashed
lines in Fig. 2!. Moreover, in this case the peak of stab
particles also becomes narrower for a larger number of tu
The only difference is that the fraction of initial condition
whose Lyapunov exponent is above the threshold beco
larger with respect to the previous case. Most of these
ticles are not lost before 107 turns, but according to ou

FIG. 1. Distribution of the Lyapunov exponent~in log scale!
evaluated at four different numbers of turns for the He´non map
without modulation atvx0/2p50.168 andvy0/2p50.201; par-
ticles lost before 107 turns are marked in black, and the dashed lin
show the thresholds according to Eq.~16!.
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method they are chaotic, and therefore they may be lost
higher number of turns.

V. NUMERICAL RESULTS

A. Hénon map

1. Interpolation of tracking data

We considered a modulated He´non map with parameter
fixed to the values specified in Sec. II A, and varied t
amplitude of the modulatione @see Eq.~5!# from 1 to 64. We
also considered a case without modulation. Long-term tra
ing has been carried out up to 107 turns, using a scan over 3
angles and 100 radial steps to optimize the error, which
around 2%. In Table II we give the dynamic aperture and
associated error@see Eq.~10!# versus the number of turns fo
different values ofe. As expected, the modulation has n
effect over the short-term dynamic aperture (103 turns!,
while it leads to a stability loss that increases with the nu
ber of turns and with the amplitude of the modulation.

We interpolated the dynamic aperture versus the num
of turns according to Eq.~12!. The value ofx2, and of the
parametersk, A, andB, with the error estimated with a con

s

FIG. 2. Distribution of the Lyapunov exponent~in log scale!
evaluated at four different numbers of turns for the modula
Hénon map withe54 at vx0/2p50.168 andvy0/2p50.201; par-
ticles lost before 107 turns are marked in black, and the dashed lin
show the thresholds according to Eq.~16!.

TABLE II. Dynamic aperture~arbitrary units! vs number of
turns for the modulated He´non map.

e D(103) D(105) D(107)

0 0.5760.01 0.4960.01 0.4760.01
1 0.5760.01 0.4960.01 0.4660.01
4 0.5760.01 0.4960.01 0.4460.01
16 0.5760.01 0.4760.01 0.4060.01
64 0.5760.01 0.4560.01 0.3360.01
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3438 57M. GIOVANNOZZI, W. SCANDALE, AND E. TODESCO
fidence level of 90%, are given in Table III. The dynam
aperture estimate through tracking with the associated e
the best fit through Eq.~12! ~solid line!, and the extrapola-
tion to infinity ~dotted line! are shown in Figs. 3–7. We als
plotted the dynamic aperture estimate provided by
Lyapunov exponent~stars!. The main results of this analysi
are the following.

~i! Goodness of the fit. In all cases, the fit is extremel
good (x2 is of the order of 1!. This is somewhat unexpecte
since we applied an interpolating law outside its expec
validity limits.

~ii ! Parameter dependence one. Both k andA decrease
as the modulational amplitudee becomes larger, as expecte
For smalle, B seems to be independent of the amplitude. F
e516, A becomes negative and, therefore, according to
extrapolation, all initial conditions will be lost sooner o
later.

~iii ! Errors of the fit. The errors associated with the fittin
parameters are rather large. In particular, the exponentk is
determined within 0.5 for all the cases. The errors onA and
B become larger when the modulation is increased:A, which

TABLE III. Fitting parameters of Eq.~12! for the modulated
Hénon map.

e x2 k A B

0 1.5 1.420.5
10.5 0.4320.06

10.03 0.620.1
10.3

1 1.7 1.220.5
10.5 0.4020.09

10.04 0.620.1
10.2

4 2.3 0.620.4
10.5 0.2420.56

10.13 0.620.0
10.5

16 0.9 0.120.5
10.4 21.5 2.3

64 3.7 20.520.3
10.4 1.020.2

12.0 20.322.0
10.2

FIG. 3. Dynamic apertureD vs number of turnsN for the
Hénon map without modulation (e50). Tracking data~error bars!,
interpolation according to Eq.~12! ~solid line! and extrapolation at
infinity ~vertical dotted line!, and prediction through the Lyapuno
exponent~stars!.
r,

e

d

r
e
denotes the extrapolation of the dynamic aperture for infin
number of turns whenk is positive, is rather sharply define
for e50, but becomes rather loose whene is increased.
Whenk changes sign in the interval of 90% confidence le
~i.e.,e516), it becomes impossible to associate an error tA
andB, since our formula contains a singularity fork50.

FIG. 4. Dynamic apertureD vs number of turnsN for the modu-
lated Hénon map (e51). Tracking data~error bars!, interpolation
according to Eq.~12! ~solid line! and extrapolation at infinity~ver-
tical dotted line!, and prediction through the Lyapunov expone
~stars!.

FIG. 5. Dynamic apertureD vs number of turnsN for the modu-
lated Hénon map (e54). Tracking data~error bars!, interpolation
according to Eq.~12! ~solid line! and extrapolation at infinity~ver-
tical dotted line!, and prediction through the Lyapunov expone
~stars!.
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We also tried a weighted fit in order to improve the pr
cision in the determination of the parametersA,B, andk; we
tried different weights, without finding any significant im
provement.

2. Extrapolation

Formula~12! allows one to extrapolate the dynamic ape
ture at a given number of turns using a limited set of lon

FIG. 6. Dynamic apertureD vs number of turnsN for the modu-
lated Hénon map (e516). Tracking data~error bars!, interpolation
according to Eq.~12! ~solid line!, and prediction through the
Lyapunov exponent~stars!.

FIG. 7. Dynamic apertureD vs number of turnsN for the modu-
lated Hénon map (e564). Tracking data~error bars!, interpolation
according to Eq.~12! ~solid line!, and prediction through the
Lyapunov exponent~stars!.
-

-
-

term data. The intrinsic limits of this method lie in the err
associated to the determination of the parametersA,B, and
k. We use tracking data from 102 up to N, with N
5104,105, and 106, to evaluate the three parameters of E
~12!, and then we extrapolate at 107. We choose this set o
parameters to be consistent with the simulations in the LH
The results~see Table IV! are good: all the extrapolations ar
in agreement with direct tracking, even though interpolat
from 102 to 104 provides a rather large error when extrap
lated at 107. Interpolation from 102 to 105 is rather precise
~within 5%); this already allows one to save a factor 100
simulations.

In comparison with the results of Ref.@9#, we note that a
larger number of turns is required to obtain a reliable op
mization. This is due to the fact that the effect of the mod
lation on the beam stability requires a longer time to beco
evident.

3. Comparison with the Lyapunov exponent

For the case without modulation the extrapolation of t
dynamic aperture at infinityA has a rather small error, an
can be compared to the prediction of the limit of regu
motion as given by the Lyapunov exponent. The agreem
is good ~see Fig. 3!, thus supporting previous results di
cussed in Ref.@32#. When a small tune modulation is con
sidered~see Figs. 4 and 5!, the Lyapunov prediction con
verges to a rather well-defined limit that fits into th
confidence interval associated toA. Indeed, since the erro
associated withA is very large~see Table III!, the quantita-
tive agreement is rather loose. For large modulation am
tudes (e516 and 64; see Figs. 6 and 7!, according to the
extrapolation the entire phase space is unstable. On the o
hand, it is hard to say whether the Lyapunov exponent p
dicts a finite stability domain or not.

Summarizing, in the case without modulation the bord
of the chaotic region evaluated through the Lyapunov ex
nent is in agreement with the extrapolation of our fit to i
finity. When the modulation is switched on, the agreem
between these two quantities becomes worse. Under t
conditions it is not clear whether the stability border pr
dicted with the Lyapunov exponent tends to a well-defin
limit. Therefore, it seems very hard to extract quantitat
information on the long-term stability from the Lyapuno
exponent in the case with tune modulation.

B. LHC

The dynamic aperture is given in millimeters normaliz
at bmax5182 m. Very onerous simulations have been carr

TABLE IV. Comparison between extrapolation of dynamic a
erture at 107 and tracking for the modulated He`non map.

e Extrapolation to 107 from Tracking

104 105 106 ~at 107)

0 0.4220.12
10.06 0.4620.03

10.02 0.4720.02
10.02 0.4720.01

10.01

1 0.4120.10
10.05 0.4620.02

10.02 0.4620.01
10.01 0.4620.01

10.01

4 0.4020.11
10.06 0.4520.03

10.02 0.4520.02
10.01 0.4420.01

10.01

16 0.3620.17
10.09 0.4120.05

10.03 0.4120.01
10.02 0.4020.01

10.01

64 0.3320.17
10.10 0.3720.04

10.03 0.3620.02
10.02 0.3320.01

10.01
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out up to 106 turns, with a scan over 17 angles and 100 ra
The relative error in the dynamic aperture is of the order
2%. In Table V we give the dynamic aperture as a funct
of e andN. Also in this case, the effect of modulation at 13

turns is very small~less than2%), while at 106 turns it
becomes relevant~around 20%). We have carried out sim
lations for a beam on momentum and without modulati
this is a purely 4D model. Then we considered a beam w
some off-momentum (1024), and switched the modulatio
from e50 to e58.

The interpolation~see Table VI and Figs. 8–13! is very
good. The best fit has axmin

2 that ranges from 0.4 to 2.0. Th
exponent decreases with the amplitude as in the He`non case,
even though the error is larger.

The extrapolation has been carried out from 102–104 and
102–105 up to 106 turns. All the extrapolations are in agre
ment with tracking at 106 turns, and the error for the extrapo
lation of 102–105 to 106 turns is less than 5%~see Table
VII !. We also tried an extrapolation to 107 turns, even
though in this case we do not have tracking data to comp
with ~see Table VIII!. All the estimates are compatible, an
using data up to 105 turns the extrapolation up to 107 turns
has an error of the order of 5–10 %.

The comparison with the Lyapunov prediction is al
rather difficult in this case~see Figs. 8–13!. For the purely
4D case the Lyapunov seems to converge to the extrapo
value of the dynamic aperture. When the modulation
switched on, it is not evident if the Lyapunov predictio
converges as before; the last two cases~see Figs. 12 and 13!
clearly show that the Lyapunov exponent ‘‘feels’’ the inst
bility due to the increased modulation, even though the qu
titative information does not seem to be significant.

Summarizing, the LHC data show the same features of
modulated He`non map: good interpolation, rather large e
rors on the fitting parameters, rather precise extrapolation
one-two orders of magnitude, and quantitative agreemen

TABLE V. Dynamic aperture~mm! vs number of turns for the
LHC.

e Dp/p D(103) D(104) D(105) D(106)

0 0 13.160.3 12.660.2 12.460.2 12.360.2
0 1024 12.960.2 12.360.2 11.860.2 11.560.2
1 1024 12.960.2 12.260.2 11.760.2 11.160.2
2 1024 12.960.2 12.160.2 11.560.2 10.760.2
4 1024 12.860.2 11.960.2 11.160.2 10.460.2
8 1024 13.060.2 11.860.2 10.860.2 10.160.2

TABLE VI. Fitting parameters of Eq.~12! for the LHC.

e Dp/p x2 k A B

0 0 0.4 1.921.2
11.1 12.021.7

10.3 923
19

0 1024 1.0 0.821.1
11.0 9.6 8

1 1024 1.4 0.321.0
10.9 3.4 13

2 1024 2.0 20.120.8
10.9 42 226

4 1024 1.0 20.120.7
10.8 47 230

8 1024 1.3 20.220.5
10.5 33 216
i.
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the Lyapunov prediction with the extrapolation of our fo
mula only in the case without modulation.

VI. CONCLUSIONS

In this paper we proposed an empirical formula to int
polate the dynamic aperture versus the number of turn

FIG. 8. Dynamic apertureD vs number of turnsN for the LHC
on momentum, without modulation (e50). Tracking data~error
bars!, interpolation according to Eq.~12! ~solid line! and extrapo-
lation at infinity ~vertical dotted line!, and prediction through the
Lyapunov exponent~stars!.

FIG. 9. Dynamic apertureD vs number of turnsN for the LHC
off momentum (Dp/p51024), without modulation (e50). Track-
ing data~error bars!, interpolation according to Eq.~12! ~solid line!
and extrapolation at infinity~vertical dotted line!, and prediction
through the Lyapunov exponent~stars!.



a
er
s

on
C

a-

ed,
om-
no-

am-

for
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presence of tune modulation. This formula provides a qu
titative framework to analyze the long-term dynamic ap
ture, which turns out to decay with a power of the inver
logarithm of the number of turns. Without tune modulati
the exponent of the logarithm is around 1.5 both for the LH
model and the 4D He´non map, in agreement with the an
lytical estimates based on the Nekhoroshev theorem@40#.

FIG. 10. Dynamic apertureD vs number of turnsN for the LHC
off momentum (Dp/p51024), with modulation (e51). Tracking
data~error bars!, interpolation according to Eq.~12! ~solid line! and
extrapolation at infinity ~vertical dotted line!, and prediction
through the Lyapunov exponent~stars!.

FIG. 11. Dynamic apertureD vs number of turnsN for the LHC
off momentum (Dp/p51024), with modulation (e52). Tracking
data ~error bars!, interpolation according to Eq.~12! ~solid line!,
and prediction through the Lyapunov exponent~stars!.
n-
-
e

This implies that there is a finite radiusA, inside which the
beam has an infinite lifetime. When a modulation is add
the exponent becomes larger: this makes long-term phen
ena more and more relevant. It turns out that there is a mo
tonic dependence of the exponent on the modulational
plitudee. When a certain amplitudee is reached,A becomes
negative, and therefore all the particles become unstable

FIG. 12. Dynamic apertureD vs number of turnsN for the LHC
off momentum (Dp/p51024), with modulation (e54). Tracking
data ~error bars!, interpolation according to Eq.~12! ~solid line!,
and prediction through the Lyapunov exponent~stars!.

FIG. 13. Dynamic apertureD vs number of turnsN for the LHC
off momentum (Dp/p51024), with modulation (e58). Tracking
data ~error bars!, interpolation according to Eq.~12! ~solid line!,
and prediction through the Lyapunov exponent~stars!.



is
rr

te
st
c
fi

h
di
o-

ac

for
for

he
the
di-
del.
B.

g-

p-

3442 57M. GIOVANNOZZI, W. SCANDALE, AND E. TODESCO
sufficiently large times: the beam has a finite lifetime. Th
scenario agrees with the experiments that have been ca
out on the effect on ripple on real machines@10#.

The interpolation procedure involves a three-parame
nonlinear fit; we outlined the method, based on standard
tistical tools, that allows one to determine the confiden
level of the fit and of the extrapolation. Even though the
parametersA, B, and k cannot be worked out with a hig
precision, this approach provides quantitative tools to pre
long-term stability. For a realistic LHC model, the extrap
lation of the dynamic aperture at 107 turns using tracking up
to 105 turns has a small error~around 5–10 %!. We checked
the agreement of our extrapolation procedure against tr

TABLE VII. Comparison between extrapolation of dynamic a
erture at 106 and tracking for the LHC.

e Dp/p Extrapolation to 106 from Tracking
104 105 ~at 106)

0 0 12.221.3
10.3 12.320.4

10.1 12.320.2
10.2

0 1024 11.921.0
10.3 11.720.4

10.2 11.520.2
10.2

1 1024 11.821.0
10.4 11.420.4

10.4 11.120.2
10.2

2 1024 11.721.1
10.4 11.120.5

10.5 10.720.2
10.2

4 1024 10.821.9
10.9 10.620.5

10.5 10.420.2
10.2

8 1024 10.122.0
11.1 10.020.7

10.5 10.120.2
10.2
N

0

f.

ce

-

F.
ied

r
a-
e
t

ct

k-

ing at 106 turns, finding a good agreement. The scenario
the LHC lattice agrees with the investigations carried out
the modulated 4D He`non map.
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TABLE VIII. Extrapolation of dynamic aperture at 107 for the
LHC.

e Dp/p Extrapolation to 107 from
104 105 106

0 0 12.021.8
10.5 12.220.6

10.2 12.220.2
10.2

0 1024 11.821.5
10.4 11.420.7

10.4 11.320.4
10.3

1 1024 11.721.6
10.4 11.120.8

10.6 10.820.4
10.3

2 1024 11.521.6
10.5 10.820.9

10.6 10.320.3
10.4

4 1024 10.423.1
11.2 10.221.0

10.7 9.920.3
10.4

8 1024 9.423.5
11.6 9.221.2

10.8 9.420.3
10.3
-
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